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LE’ITER TO THE EDITOR 

Travelling kinks in Schlogl’s second model for 
non - equilibrium phase transitions t 

E Magyari 
Institut fur Physik der Universitat Basel, Klingelbergstrasse 82, CH-4056 Basel, 
Switzerland 

Received 1 December 1981 

Abstract. By using the separation technique recently developed by Osborne and Stuart, 
travelling wave solutions are written down for the nonlinear reaction-diffusion equation 
of Schlogl’s second model, assuming that the necessary conditions for the static phase- 
coexistence are satisfied. 

Ten years ago Schlogl devised two simple chemical reaction models (Schlogl 1972) 
which exhibit the behaviour of the first- and second-order non-equilibrium phase 
transitions, respectively. Schlogl’s second model which exhibits first-order behaviour, 
including the coexistence of two spatially separated phases, is connected with the 
autocatalytic chemical reactions 

k 

ki 
B + X  & C, A + 2 X  & 3X, 

k i  

where the concentrations a, 6, c of the species A, B, C and the reaction rates ki, k :  
are externally kept fixed and only the concentration n of the intermediate product X 
can vary in time and space due to the chemical reactions and diffusion. Under these 
conditions, the evolution of n in Schlogl’s second (one-dimensional) model with 
uniform diffusion (D = constant) is governed by the nonlinear parabolic equation 
(Schlogl 1972) 

an/at - a2n/az2 = -n3 + 3n2 - pn + y 1 (2) 
where /3 = 9kikhb/k:a2 and y = 27k;*k;c/k:a3 are positive parameters and n = 
n(z,  t )  2 0,  -&et, z +CO, are scaled dimensionless quantities (the corresponding 
physical quantities are measured in units of ( n )  = k la /3k ; ,  (t) = 9k; /k:a2  and ( z )  = 
3(Dk i)”’/ kla, respectively). Regarding 

p = y + 2  with O<r<l, (3)  

n1,2 = 1 * (1 - Y ) ” ~ ,  n3 = 1, (4)  
where n1,2 are stable and n3 is unstable (Schlogll972). In static conditions (&/at = 0), 
i.e. when the variation of n due to the chemical reactions is instantaneously balanced 

equation (2)  admits the positive uniform (an/at = 0, an/dz = 0) solutions 
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in each elementary volume of the system by its variation due to the diffusion, the 
stable uniform solutions n1,2 represent the concentrations of the species X in two 
coexistent but spatially separated phases, connected to each other by a thin kink (+) 
or antikink (-) shaped boundary layer (Schlogl 1972): 

( 5 )  

Our aim in this Letter is to obtain travelling wave (TW) solutions to equation (2) 
by using the separation technique recently developed by Osborne and Stuart (Osborne 
and Stuart 1978, 1980a,b, Osborne 1981), assuming at the same time that the 
necessary conditions (3) of the static phase-coexistence are satisfied. 

According to the Osborne-Stuart ( O S )  separation scheme, we are looking for the 
solution of equation (2) in the form of a dependent variable transformation 

n ( z ,  t )  = g(v), (6) 

where r ]  is a separable function of z and t. Choosing further r] = K exp[r(z - u t ) ] ,  
where K, r and U are non-vanishing real constants, the existence of (separable) TW 

solutions is guaranteed for a large class of nonlinear evolution equations (Osborne 
1981). In our case, taking into account also (3), equation (2) becomes 

(7) 

n,(z) = 1 * (1 - y)”’ tanh {[&1- y ) ]1 /2z } .  

r2q2g,r + r ( r  + u)qg’ -  g 3  + 3g’ - ( y  + 2)g + y = 0, 

where the prime indicates d/dq. Further, let us substitute in equation (6) 

g(v) = P + VSY ( 5 1 9  5 = vq, (8) 

where p , q ,  s are constants, 6 is a new variable and y a new function. Now, by 
choosing p = 1, s = q = 3(y - 1)/2ru and u 2  = 9(1- y)/2, we obtain for y the equation 
(1 - y)(d2y/dS2) = 2y3, which yields the first integral 

(9) 

This equation may by the substitution y = *( 1 - y)1/2B1/2(5 + to, g 2 ,  g 3 )  be reduced 
to the differential equation of the Weierstrass B function (Abramowitz and Stegun 
1965) with g 3  = 0 and To and g 2  arbitrary constants. In this way, taking into account 
also the homogeneity relation satisfied by the B function, the constant K may be 
eliminated and the (in the os-sense) separable TW solutions of equation (2) have the 
form 

(1 - y)(dy/d[)2 - y 4  = constant. 

n ( Z ) =  1 * ( 1 - y ) 1 ’ 2 w B 1 / 2 ( W + W g , g 2 , 0 ) ,  (10) 

where 2 = z - ut, U = r3[4(1- y)]1’2, wo and g2 are arbitrary constants restricted only 
by the requirement n (Z) 3 0, and 

w = exp(-uZ/3). (1 1) 

(The f signs in U and in front of (1 - Y ) ” ~  are uncorrelated.) 
In the following we should like to pick out from (10) those solutions only, which 

describe (both spatially and temporally) bounded concentration distributions. The 
explicit expressions of the B function for g 2  2 0 and g 2  = 0 show (Abramowitz and 
Stegun 1965) that such concentration distributions only exist for g2 = 0. Indeed, in 
this case B ( w  + wo, 0,O) = ( w  + wo)-2 and thus 

(12) n ( Z )  = 1 * (1 - y p 2 W ( w  + 
where w o a O  and w is given by equation (11). 
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Let us now discuss the physical meaning of these solutions. First we notice that, 
due to the four possible sign combinations, equation (12) yields in general four different 
solutions which break all the symmetries ( z  + -2, z + z + 20, t + t + to) of equation (2). 
For wo = 0, however, this set reduces to the two stable uniform solutions nl,z given by 
equation (4), which possess all these symmetries. Further, for finite Z and infinitesimal 
wo, equation (12) yields certain (symmetry breaking) solutions of the linearised version 
of equation (2) around the uniform solutions n1,2. For wo>O the solutions (12) only 
exist in a dynamical regime, i.e. for non-vanishing velocity U (measured in units of 
( U )  = ( z ) / ( t ) ) .  In this case they describe kink-shaped spatio-temporal concentration 
distributions. These kinks always carry the concentration field n (z, t) from the unstable 
uniform state n3 = 1 at f = -a into one of the stable uniform states n ~ , ~  at t = +a. 
Therefore the solutions (12) describe a possible dynamics of the transition from an 
unstable steady state into a stable one in an open system far from equilibrium. 

Finally, we should.like to show that our moving kinks given by equation (12) are 
related in a subtle manner to the static kinks given by equation (5 ) .  With this aim, 
let us linearise the evolution equation (2) around the static solutions ( 5 )  according to 

where v(z 
looks like 

where [ =  

n(z, t )  = n,(z)  + v(z) exp(-At) (13) 
is an infinitesimal quantity and A a parameter. The linearised equation 

dZ v 

i(1- y)]1’22. This (Schrodinger-like) equation admits only two bounded 
solutions for v(z). One is the Goldstone mode v(z) - sech’ 5 corresponding to A = 0, 
which reflects the marginal stability of the static kinks against translations, and the 
second is v(z) = vo sinh 5 sech’ 5 and corresponds to the (positive) eigenvalue A = 
3(1- y)/2. Therefore, the static kinks ( 5 )  are stable against small perturbations, their 
single stable mode being of the form 

n(r ,  t )  = n,(z)  + vo sinh 5 sech’ 5 exp [-&l- y) t ] ,  (15) 
where YO is an infinitesimal constant. Hence, for 5+*o0, the perturbed static kink 
(1 5) behaves as 

and its antikink as 

Now, it is easy to see that by choosing I v o / w o I = ~ u ~ / ~ J Z ,  one of the four moving 
kinks (12) always approaches for [+ +a3 or -CO one of the stable uniform states nl,z 
just like the stable mode (15) of the static kink or antikink ( 5 ) ,  i.e. according to one 
of the asymptotic equations (16), (17). 

The concentration distributions described by equation (1 2) are explicit examples 
for creation of spatio-temporal order in open systems far from equilibrium. Initially 
the Schlogl model was created to describe the autocatalytic chemical reactions (1) as 
an example of a system showing a non-equilibrium phase transition. Since then various 
aspects of this model have attracted considerable interest (for recent contributions 
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see e.g. Dewel et al 1981, Brachet and Tirapegui 1981, Grassberger 1981, Dung and 
Kozak 1981). In this respect it is interesting to note that the evolution equation ( 2 )  
of the discussed model is also adequate for the description of the morphogenetic field 
of a multicellular ensemble (Livshits et al 1981) and other synergetic systems. 
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